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Abstract

Constitutive equations for nonlinear tensile behavior of PMMA foams were studied. Five viscoelastic models composed of elastic and viscous

components were accounted for the modeling of the constitutive equations. The developed constitutive equations are expressed in terms of

material properties and foam properties such as strain, strain rate, elastic modulus, relative density of foam, and relaxation time constant. It was

found that the stress–strain behaviors by Generalized Maxwell model, Three Element model and Burgers model could be described by the

constitutive equation obtained from the Maxwell model. For the verification of the constitutive model, poly(methyl methacrylate) (PMMA)

microcellular foams were manufactured using batch process method, and then uniaxial tensile tests were performed. The stress–strain curves by

experiment were compared with the theoretical results by the constitutive equation. It was demonstrated that nonlinear tensile stress–strain

behaviors of PMMA foams were well described by the constitutive equation.

q 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Most polymers or polymeric foams have viscoelastic or

viscoplastic behaviors [1–8]. To be able to describe a specific

mechanical behavior of polymeric foams, the corresponding

constitutive law is required for the specific deformation

phenomena of the material.

The mechanical properties of microcellular foams have

been of great interest to researchers in recent years because of

their unique microstructure. Microcellular foams are usually

defined as the foams having average cell sizes in the order of

10 mm and cell densities in the order of 109 to 1015 cells/cm3

[9]. Compared to unfoamed polymers and conventional foams,

microcellular foams have some superior mechanical properties

such as high impact strength [10,11], high toughness [12], high

stiffness-to-weight ratio [13], high fatigue life [14], and

reduced material weight and cost. Therefore, microcellular

foams have a great potential for applications such as
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packaging, insulation, automotive and aircraft industries, and

structural components.

In order to describe the macroscopic nature of the

materials in question, constitutive laws are used, so proper

constitutive laws are necessary to govern the distinct types

of macroscopic material behaviors. Schiessel et al. [15]

derived fractional constitutive equations on the basis of

viscoelastic models such as the Maxwell model and Kelvin-

Voigt model, where each model was changed to generalized

form using fractional elements. If a finite number of basic

viscoelastic elements is used with a finite distribution of

delay or relaxation times, the relationship between stress

and strain can be obtained by a fractional model;

Hernandez-Jimenez et al. [16] studied this method using

the Maxwell model. A fractional viscoelastic constitutive

equation using the three parameter model was studied by

Schmidt and Gaul [17] and the adaptive capability of the

equation to viscoelastic moduli by experiment was

demonstrated. In search for a different method to express

the nonlinear viscoelastic behavior of thermorheologically

complex materials, Klompen and Govaert [18] considered

stress-dependent viscosity in Generalized Maxwell model

and applied it to PMMA. Also, nonlinear viscoelastic

models based on free volume considerations were used as

constitutive models [19], in which the effect of stress and
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strain on the free volume was considered and compared to

tensile experimental data at various rates.

Convolution integral forms are sometimes used to describe

the dynamic behavior of viscoelastic properties of foams [8,20]

. Notably, the time-dependent response of a viscoelastic

material has been expressed by convolution integral called

Boltzmann superposition integral [21]. Lu and Zhang [22]

showed a constitutive relation expressed in terms of relative

density and strain, using the Boltzmann integral, and applied it

for the tensile behavior of microcellular polycarbonate.

In this paper, constitutive equations for nonlinear tensile

behavior of PMMA foams were studied. The modeling was

presented in terms of foam parameters such as foam density

and fraction of solid in the cell struts. The application of the

constitutive model was confined to only tensile behavior of

foams which show viscoelastic property. Also, experimental

work to verify the constitutive model was performed; PMMA

microcellular foams were manufactured using batch process

method and tensile tests results of the foams were compared

with the constitutive model.
2. Constitutive equations for nonlinear elastic behavior

of PMMA foams

Several constitutive equations were derived from viscoe-

lastic models to describe the tensile stress–strain behavior of

PMMA foams.
2.1. Constitutive equation using Maxwell model

In the Maxwell model (Fig. 1(a)), the spring and dashpot

represent the elastic response and the time-dependent response,
Fig. 1. Viscoelastic models.
respectively, where E is elastic modulus and h is defined as

viscosity modulus. The equation of motion of the model is

expressed as:

_s C
E

h
s Z E _3 (1)

where s is the stress on both spring and dashpot, and 3 is the

total strain of the model. From Eq. (1), a constitutive equation

is derived, providing strain rate is constant, as:

sðtÞ Z h_3 1Kexp K
E

h
t

� �� �
: (2)

The relationship between E and h is obtained from Fig. 1(a):

h Z
3s

_3d

E (3)

where 3s and 3d are the strains shown by the spring

component and the dashpot component, respectively. In

nonlinear behavior, the modulus of viscosity h is dependent

on the stress during the deformation [18]. However, in this

study, the strain and strain rate effects are assumed to be

small and negligible. In other words, the constant value of

the modulus of viscosity is used in the constitutive equation.

Thus, the ratio of 3s and _3d could be considered as a

constant and is represented using the relaxation time

constant expressed as tZh/E, where t is a material property

determined experimentally. If the time variable is replaced

by strain using the relationship 3Z _3t, the stress is expressed

as a function of strain and strain rate:

s Z h_3 1Kexp K
3

t_3

� �h i
: (4)

The equivalent elastic modulus Eeq is obtained from Eq.

(4) and it can be counted as the elastic modulus of foams,

E*:

EeqðZ E�Þ Z
ds

d3 3/0

Z E

				 (5)

Eventually, the constitutive equation is expressed as a

function of strain, elastic modulus of foams, time constant t,

and strain rate:

s Z E�t_3 1Kexp K
3

t_3

� �h i
: (6)

By expressing E* and t as function of foam properties,

the constitutive equation can be represented in terms of

foam properties such as the relative density of foams.
2.2. Constitutive equation using Generalized Maxwell model

Using the Riesz representation theorem [23], the stress

tensor expressed by strain history can be changed to the

Stieltjes integral form, and from the integral the stress

constitutive equation is obtained with variable changes [21]:



Fig. 2. Comparison of the constitutive equations by Generalized Maxwell

model with that by Maxwell model (E* are the same in all three models).

Fig. 3. Comparison of the constitutive equations by Generalized Maxwell

model with that by Maxwell model (E* are the same in all three models).
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sðtÞ Z

ðt

0

EðtKt 0Þ_3ðt 0Þdt 0: (7)

E is defined as a relaxation function which represents

modulus. Since the force on each value of Generalized

Maxwell model (Fig. 1(b)) relaxes exponentially, the modulus

is expressed as [5]:

EðtKt 0Þ Z
Xn

iZ1

Eiexp K
tKt 0
� 


ti

� �
(8)

in which the relaxation time constant ti is defined as tiZhi/Ei.

Accordingly, the constitutive equation is obtained providing

_3Zconstant and tZ3=_3 as:

s Z
Xn

iZ1

Eiti _3 1Kexp K
3

ti _3

� �� �
: (9)

Eq. (9) contains the concepts of convolution integral and

fractional model. Since the stress in Generalized Maxwell

Model is the sum of the stresses of each Maxwell model

component, the stress in Eq. (9) can also be obtained from Eq.

(4) by summation of each stress component:

s Z
Xn

iZ1

si Z
Xn

iZ1

hi _3 1Kexp K
3

ti _3

� �� �
: (10)

The equivalent elastic modulus of the Generalized Maxwell

model is obtained from Eq. (9);

EeqðZ E�Þ Z
ds

d3 3/0

Z
Xn

iZ1

Ei

					 (11)

If hiZh and EiZE, as a special case of the Generalized

Maxwell model, E*ZnE and tiZ ðh=EÞðZtÞ. Then, Eq. (9)

becomes

s Z nEt_3 1Kexp K
3

t_3

� �h i
Z E�t_3 1Kexp K

3

t_3

� �h i
: (12)

This corresponds to the constitutive equation by the

Maxwell model (Eq. (6)). As another case, when nZ2, Eq.

(9) is expanded to:

s Z E1t1 _3 1Kexp K
3

t1 _3

� �� �

CE2t2 _3 1Kexp K
3

t2 _3

� �� �
(13)

where E*ZE1CE2, t1Zh1/E1 and t2Zh2/E2. For more

simplicity, if E1 is assumed equal to E2, then Eq. (13) is:

s Z
E�

2
t1 _3 1Kexp K

3

t1 _3

� �� �
C

E�

2
t2 _3 1Kexp K

3

t2 _3

� �� �

(14)

in which E�ZE1 CE1 Z2E1. Eq. (14) becomes the constitu-

tive equation obtained from the Maxwell model when t1Zt2.

Despite t1st2, it was proved that by choosing proper value of

t1 and t2 in Eq. (14), the same stress–strains curves as those by
the Maxwell model (Eq. (6)) are made; where t1Ct2Rt is

always maintained. This rule is applied to all n in the

Generalized Maxwell model. For the cases of nZ2 and nZ3,

the stress–strain curves of Eq. (9) are plotted and compared

with the one by the Maxwell model (Eq. (6)) in Fig. 2. For the

plot of Eq. (6) in Fig. 2, the value of t was determined so that

the theoretical curve can fit to the experimental data. Also, the

values of E* and _3 were obtained from experimental data and

Eq. (30). In order to match to the stress–strain curve by

Maxwell model, the Generalized Maxwell model (nZ2) can

have many values of t1 and t2, however, only one value (t1Z
47 and t2Z100) was specified in Fig. 2. The Generalized

Maxwell model with nZ3 was also used by the same method

as nZ2. From Fig. 2, it is clear that the constitutive equation by

the Generalized Maxwell model created the same stress–strain

behavior as the Maxwell model with only different time

constants. Fig. 3 shows the stress–strain curves by the

Generalized Maxwell model with each different Ei and ti. It

was also proved in the Figure that if the same equivalent elastic

modulus is used in both models, any form of the constitutive

equation by the Generalized Maxwell model can describe the

stress–strain behavior made by the Maxwell model. In other
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words, the behavior of Eq. (9) almost coincides with that of Eq.

(6) if proper combinations of Ei and ti are used in Eq. (9).
2.3. Constitutive equation using Three Element model

The equation of motion of the Three Element model

(Fig. 1(c)) is:

_s C
E

h1 Ch2

s Z
Eh2

h1 Ch2

_3 C
h1h2

h1 Ch2

€3: (15)

Assuming that _3Zconstant and €3Z0, a constitutive

equation is derived using the similar procedures as in Section

2.1:

s Z h2 _3 1Kexp K
E

h1 Ch2

3

_3

� �� �
: (16)

If the relaxation time constant is set as tZ ðh1Ch2Þ=E,

s Z h2 _3 1Kexp K
3

t_3

� �h i
: (17)

The equivalent elastic modulus is calculated in the same

method:

EeqðZ E�Þ Z
ds

d3 3/0

Z
h2

h1 Ch2

E

				 (18)

From Eqs. (17) and (18), the constitutive equation by the

Three Element model is:

s Z E�t_3 1Kexp K
3

t_3

� �h i
(19)

which is identical to the constitutive equation by the Maxwell

model. This means that even if the values of the components E

and h are different between the Maxwell model and the Three

Element model, the stress–strain behaviors by both models are

coincident with each other if and only if E* and t are the same

in both models. The expressions of E and h are also

summarized in Table 1.
Table 1

Summary of constitutive equations and equivalent elastic modulus for foams

Type of model Equivalent elastic modulus of foams R

c

Maxwell E*ZE t

Generalized Max-

well (EiZE,

hiZh)

E*ZnE t

Three Element (E,

h1, h2)

E�Z ðh2=ðh1 Ch2ÞÞE t

Generalized Max-

well
E�Z

Pn

iZ1

Ei
t

Burgers E�ZKðh2
1=ðh1 Ch2ÞÞl1 Kððh1h2Þ=ðh1 Ch2ÞÞl2 where

l1;2 Z ð1=2h1h2ÞðKBG
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 K4AC

p
Þ

Three Element

Standard Solid

(E1, E2, h)

E*ZE2 t
2.4. Constitutive equation using Three Element Standard solid

The equation of motion of the Three Element Standard Solid

(Fig. 1(d)) is:

_s C
E1 CE2

h
s Z

E1E2

h
3 CE2 _3: (20)

The corresponding constitutive relation is obtained from Eq.

(20) as:

s Z
E1E2

E1 CE2

3

K
E2

E1 CE2

h_3
E1

E1 CE2

K1

� �
1Kexp K

E1 CE2

h

3

_3

� �� �
:

(21)

The equivalent elastic modulus is:

EeqðZ E�Þ Z
ds

d3 3/0
Z E2:

			 (22)

If the relaxation time constant is set as tZh=ðE1 CE2Þ, then

s Z
E1E2

h
t3KE2t_3

E1

h
tK1

� �
1Kexp K

3

t_3

� �h i
: (23)

Using the relationship, E1Z ðh=tÞKE2 and E*ZE2, the

constitutive equation is expressed as:

s Z E�3K
E�2t

h
3 C

E�2t2 _3

h
1Kexp K

3

t_3

� �h i
: (24)

As shown in Fig. 4, the stress–strain curves by Eq. (24) are

getting closer to that made by the Maxwell model as E1

becomes small. The three curves (tZ45, tZ25, and tZ10) in

Fig. 4 were made so that they have the same tensile strength as

the curve by the Maxwell model. Under this condition t is

always smaller than that of Maxwell model provided E1 is

positive. To the given t, numerous values of h and E1 exist.
elaxation time

onstant

Constitutive equations

Zh/E sZE�t_3½1KexpðKð3=t_3ÞÞ�
Zh/E sZE�t_3½1KexpðKð3=t_3ÞÞ�

Z ðh1 Ch2Þ=E sZE�t_3½1KexpðKð3=t_3ÞÞ�

iZhi/Ei sZ
Pn

iZ1

Eiti _3½1KexpðKð3=ti _3ÞÞ�

sZh1 _3C ½Kh1 _3C ð1=ðl1 Kl2ÞÞðE
�C ððE1E2Þ=ðl2h2 _3ÞÞÞ�

el13 Kð1=ðl1 Kl2ÞÞðE
�C ððE1E2Þ=ðl2h2 _3ÞÞÞe

l23 where

l1;2 Z ð1=2h1h2 _3ÞðKBG
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 K4AC

p
Þ, AZh1h2,

BZE2h1 CE1 h1 Ch2

� 

, CZE1E2 or sZh1 _3½1K

ðh1=ðh1 Ch2ÞÞexpðl1ð3=_3ÞÞKðh2=ðh1 Ch2ÞÞexpðl2ð3=_3ÞÞ�

where l1;2 Z ð1=ð2h1h2ÞÞðKBG
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 K4AC

p
Þ

Zh=ðE1 CE2Þ sZE�3KððE�2tÞ=hÞ3C ððE�2t2 _3Þ=hÞ½1KexpðKð3=t_3ÞÞ�



Fig. 4. Comparison of the constitutive equations of foams by Three Element

Standard Solid (E*ZE2Z576 MPa) with that by Maxwell model

(E*Z576 MPa).

Fig. 5. Comparison of the constitutive equations of foams by Burgers model

with that by Maxwell model: (equivalent elastic moduli in both models are the

same).
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In Fig. 4, one of those was chosen and specified for each t. If

one value of h or E1 is determined, the other is calculated by

E1Z ðh=tÞKE2 or tZh=ðE1 CE2Þ. If the same t (Z67) is

used, the stresses by the Three Element Standard Solid model

are always greater than that by the Maxwell model unless E1 is

negative. In other words, the stress–strain behavior by the

Three Element Standard Solid has more strain hardening

phenomenon than the Maxwell model.

2.5. Constitutive equation using Burgers model

The equation of motion of the Burgers model (Fig. 1(e)) is:

h1h2 €s C ½E2h1 CE1ðh1 Ch2Þ� _s CE1E2s

Z E1E2h1 _3 CE1h1h2 €3: (25)

If the strain rate is considered as a constant during the tensile

deformation, the constitutive equation is expressed as:

s ZK
h2

1

h1 Ch2

_3el1ð3=_3ÞK
h1h2

h1 Ch2

_3el2ð3=_3Þ Ch1 _3 (26)

where, l1;2 Z ð1=2h1h1ÞðKBG
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2K4AC

p
Þ, AZh1h2,

BZE2h1CE1ðh1Ch2Þ, CZE1E2 and DZE1E2h1.

The equivalent elastic modulus is

EeqðZ E�Þ Z
ds

d3 3/0
ZK

h2
1

h1 Ch2

l1K
h1h2

h1 Ch2

l2:

				 (27)

In order to E* be shown in the constitutive equation, Eq. (25)

can be solved by the Laplace transformation method with

initial conditions s(0)Z0 and _sð0ÞZEeq.

s Z h1 _3 C Kh1 _3 C
1

l1Kl2

E� C
E1E2

l2h2 _3

� �� �
el13

K
1

l1 Kl2

E� C
E1E2

l2h2 _3

� �
el23 (28)

where l1;2 Z ð1=2h1h2 _3ÞðKBG
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2K4AC

p
Þ.
If the value of h1 is chosen equal to h2 in the model, the

magnitude of the equivalent elastic modulus is determined only

by E1 and E2:

EeqðZ E�Þ Z
ds

d3
3/0 Z

E2

2
CE1 ðwhen h1 Z h2Þ:

				 (29)

The shape of the stress–strain curves are dependent on

h1(Zh2) providing the equivalent elastic modulus is not

changed. The stress–strain curves in this case are plotted in

Fig. 5 and compared with those of the Maxwell model. As

shown in Fig. 5, the stress–strain curves by Burgers model are

almost identical to the Maxwell model’s even though there are

slight differences at low time constant t.

Summary of the constitutive equations studied in this paper

and their equivalent elastic moduli for foams are listed in

Table 1. The characteristics of those equations are that the

relaxation time constant and the equivalent elastic modulus

play important roles in every constitutive equation. By

comparing the constitutive equations studied in this paper, it

is proved that the constitutive equation by the Maxwell model

could be a representative one. To verify the relevance of the

constitutive equation, experimental work has been performed

to compare with the theoretical results.
3. Experimentation

In order to obtain the stress–strain curves by experiment,

PMMA closed cell microcellular foams were manufactured in

a batch process method [24] and then uniaxial tensile tests were

performed.
3.1. Materials

PMMA with a MwZ108,500 and a MnZ56,700 was

supplied by Canus Plastics. Before use the samples were

dried at a temperature of 90 8C for at least 24 h. With the use of

a hydraulic, heated, press (Carver, Inc) machine, PMMA resins

were molded into 1.5 mm thick panels by hot compression
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Fig. 6. Experimental tensile behaviors of PMMA microcellular foams.
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molding, where 5 tons of pressure were applied for four

minutes. The temperature of the hot pressing plates was

180 8C. Rectangular strips were obtained from the mold with

dimensions of 6 mm!50 mm. The blowing agent used in this

study was carbon dioxide obtained from Praxair-Inc.

3.2. Foaming experiment

The foaming experiments were performed by a batch

process. First, the polymer samples were saturated in a high

pressure CO2 chamber at a pressure of 3.8–5.8 MPa and at

room temperature (21–23 8C). The saturation time, which

varies from 1 day to 2 weeks, was calculated according to the

diffusion coefficient of the carbon dioxide in PMMA [25]. In

the next stage, the saturated samples were put in a water bath

with selected temperature for 5–20 s. The rapid change in

temperature and pressure induced cell nucleation and cell

growth [26,27]. Afterwards, the samples were put in cold water

to fix the foam morphology.

3.3. Sample characterization

The samples were air dried for 7 days before testing. The

foam density was measured by a buoyancy method using a

density determination kit supplied by Denver Instrument. The

gravity of the solid was measured in distilled water and in the

air. The Archimedean principle was applied for determining

the specific gravity of the foams. The relative foam density is

defined as the ratio of the foam density and the unfoamed

polymer density. The expansion ratio is defined as the ratio of

the unfoamed polymer density to the foam density.

3.4. Mechanical testing

The tensile mechanical properties were tested with an Instron

4202 machine with a 10 kN load cell at room temperature.

Rectangular strip samples with thicknesses from 1.5 to 3 mm,

depending on their expansion ratios, were used for tensile testing.

A crosshead speed of 1.0 mm/min was used and the strain was

calculated from the displacement of the crosshead of the machine.

The elastic moduli were obtained by calculating the slope of the

stress–strain curves at the initial linear portions. The experimental

results of tensile strength and elongation at break were also

reported. A minimum of five specimens were tested for each

sample and the average data were used in this study.

4. Results and discussion

4.1. Mechanical properties of PMMA microcellular foams

Mechanical behaviors of PMMA microcellular foams were

determined by tensile experiments. Different densities of the

PMMA foams were obtained by changing the processing

parameters such as foaming time, foaming temperature and

saturation pressure. The engineering stress–strain curves of the

PMMA microcellular foams are presented in Fig. 6 at different

relative densities. As shown in the figure, the tensile
mechanical properties of the PMMA microcellular foams

were closely related to the foam density, which is controlled by

the foaming conditions. The elastic modulus, tensile strength

and the elongation at break were studied as functions of foam

relative density. The experimental correlation between the

modulus and the relative density matched Gibson’s equation on

the whole. The tensile strength and elongation at break both

decreased when decreasing foam density. For some of the

foaming conditions which resulted in higher foam density,

higher elongation at break of the microcellular PMMA foam

was observed compared with the unfoamed PMMA [24].

4.2. Parametric verification of the constitutive equation

The constitutive equation obtained from the Maxwell model

was used for validation with experimental results. The elastic

modulus of foams E* under the tensile loading can be

represented in terms of the relative density of foams using

Gibson and Ashby’s prediction [28] for closed cell foams;

E�

Es

zf2r2
r C ð1KfÞrr (30)

where Es is Young’s modulus of the unfoamed solid and rr is

the relative density of foams and f is the fraction of solid in the

cell struts. Using Eq. (30), Eq. (6) is expressed as a function of

the relative density of foams;

s Z t_3Es½f
2r2

r C ð1KfÞrr� 1Kexp K
3

t_3

� �h i
(31)

This constitutive equation can be applied for nonlinear elastic

tensile behavior of foams. The parametric studies to Eq. (31) are

shown in Fig. 7. As expected, the stresses increased with

increasing strain rate, elastic modulus, time constant, and relative

density, though this stress decreases as f increases, which implies

that the cells are approached to open-celled form.

4.3. Validation of the constitutive equation for PMMA

microcellular foams

In Fig. 8, the stress–strain curves plotted by Eq. (31) were

compared with uniaxial tensile test data. It was demonstrated



Fig. 7. Parametric verification of the constitutive equation (a) relaxation time constant, (b) strain rate, (c) elastic modulus, (d) relative density of foams, and (e)

fraction of solid in the cell struts.
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that theoretical curves closely represent the experimental data.

Chen’s experiments [29] have yield like behaviors on quasi-

static tensile tests of PMMA, however, there was little yield

phenomenon observed in the current experiment as shown in

Fig. 8. The macroscopic responses of the PMMA foams

appeared quite brittle. The tensile strengths of the analytical

curves in Fig. 8(a) were calculated by the formula proposed for

PMMA microcellular foams [24]:

s�
TS

sTS

zr2
r (32)

where s�
TS and sTS are the tensile strengths of the foam and

unfoamed solid, respectively. For the value of f, 0.8 was

chosen in Eq. (31) because the magnitude of the elastic

modulus of foams, E*, (Eq. (30)) was close to the experimental

data when fZ0.8. If the percent elongation is used for the

determination of the failure strain, the stress–strain curves from

Eq. (31) fit the experimental data more closely as shown in

Fig. 8(b).

The same strain rate (Z0.000667 sK1) was applied to both

Eq. (31) and experimental results, and the relaxation time

constant tZ65 was used for plotting of Eq. (31) in Fig. 8. Also
the Young’s modulus of unfoamed PMMA EsZ1940 was used

in Eq. (31). The time constant tZ65 is valid only at the strain

rate used in this experiments. Therefore, if the test condition is

changed, t would be changed too.

In this study, only one relaxation time constant was used for

comparison with experimental results, however, the rate of the

change of the time constant t to the change of the strain rate or

time should be defined with more experimental data. There-

fore, for generalized expression of the constitutive equation,

the time constant t should be represented in terms of test

conditions or foam properties, such as strain rate, and requires

the effect of varying strain rate during loading to be taken into

account. Also, the effects of cell morphology such as cell size,

cell distribution, cell type and cell wall thickness are

recommended to be considered in formulating the constitutive

equations.
5. Conclusion

Constitutive equations for PMMA foams subjected to

tensile loading were studied, where viscoelastic components

were used to model the nonlinear tensile behavior of foams.
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Fig. 8. Comparison of the engineering tensile stress–strain curves of PMMA

foams; (solid lines: Eq. (31), dotted lines: experimental results).
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Results indicated that the constitutive equation obtained from

the Maxwell model could be representative of all the

constitutive equations based on different types of viscoelastic

models such as: the Generalized Maxwell model, the Three

Element model and the Burgers model. In other words, any

stress–strain curve made by the Generalized Maxwell model,

Three Element model and Burgers model could also be

generated by the constitutive equation using the Maxwell

model; provided the relaxation time constant is chosen

properly.

The proposed constitutive equations are expressed as

functions of strain, strain rate, relaxation time constant and

elastic modulus, where foam properties such as equivalent

elastic modulus, fraction of solid in the cell struts, and relative

density of foams are used. With these parameters, the
constitutive model could describe the nonlinear elastic tensile

behavior of foams. Without considering the temperature effect,

this constitutive model has an advantage in that it can be

applied to practice with only a few foam properties. For

verification of the constitutive model, microcellular foams

were prepared from PMMA using the batch method and tensile

test results of the foams were compared with the model. The

theoretical model demonstrates a fit quite similar to test data.
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